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Abstract. The theoretical scheme based on the density matrix formalism, and self-
consistently derived from the principles of Quantum Electrodynamics, is presently one
of the most solid frameworks for the interpretation of solar polarimetric observations.
This scheme has been highly successful, mainly for the interpretation of polarimetric
signals that can be described in the so-called limit of complete frequency redistribution
(CRD). However, it suffers from the severe limitation that partial frequency redistri-
bution (PRD) effects cannot be accounted for. The metalevel theory can handle PRD
effects, but all the attempts for its generalization to account consistently for collisions
and lower-level coherences have failed. The redistribution matrix approach is very
suitable for taking PRD effects into account. However, it can consistently describe only
two-level atoms with unpolarized lower level. New heuristic approaches have been pro-
posed for treating two-term atoms, but they are based on rather crude approximations
and their validity and physical consistency are far from being firmly established. Some
few reflections that may lead to the establishment of a self-consistent set of equations,
fully derived from first principles, are put forward. These reflections are based on the
introduction of the Fourier transform of the density matrix.

1. Introduction

New polarimeters with unprecedented sensitivity are nowadays available to the solar
community active in the field of spectropolarimetry. The observations from such instru-
ments are arising a serious challenge to the different theoretical schemes developed in
the past for the interpretation of polarimetric observations. These schemes are based on
the theory of Quantum Electrodynamics (Q.E.). Although Q.E. can nowadays be con-
sidered as an “old theory”, its main applications have always concerned the description
of rather schematic physical experiments and many phenomena in polarization have
still to be fully understood within its framework.

The physical problem to be addressed by solar physicists is the one of measuring
and interpreting the intensity and the polarization properties (in other words the Stokes
parameters profiles) of the electromagnetic radiation originating from the solar atmo-
sphere, and contained in a particular wavelength interval of arbitrary extension. But the
solar atmosphere is a very complicated environment. It may still hide some mysteries
(we are thinking here mostly about the turbulent behavior of the magnetic field) but,
for the moment, we can suppose that we know its structure in the form of a sophisti-
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cated model (even tridimensional) giving at each point the chemical composition, the
value of the thermodynamic parameters (such as temperature, density, pressure, bulk
velocity, etc.) and the value of the magnetic field (even if in the form of a PDF, or
Probability Density Function). The selected wavelength interval may contain the sig-
natures introduced, in the form of spectral lines, by one or more atoms present in the
medium, whose physical properties we need to describe in terms of their populations
and quantum interferences.

For many applications the simple two-level atomic model cannot be applied. On
the contrary, one needs to resort to a multi-level or to a multi-term atomic model. Often
(but not always), a description in terms of a “two-term atom” may be a satisfactory
approximation to the problem. In other cases a “three-term atom” or a “multi-term
atom” would be more appropriate. In this situation, things rapidly get to be extremely
complicated. Each term splits into different J-levels and each J-level is further split
by the presence of a magnetic field into its magnetic sublevels, or M-levels. In many
cases, there is a further complication due to the presence of hyperfine structure (HFS).

Just to be concrete on a single example, if we want to investigate the polarization
characteristics of the wavelength interval around the sodium D lines, we can stick to
a two-term model atom with HFS. In this case we have 24 M-levels in the upper term
and 8 M-levels in the lower term. In general, we thus have 32 levels of which we need
to know the populations, and all the possible coherences (or quantum interferences)
that are present among them. This already complicated model-atom sits in an envi-
ronment that is characterized by the presence of a radiation field which is at the time
anisotropic and polarized. The radiation field interacts with the atom by means of the
usual processes of absorption, emission and stimulated emission, though we have to re-
member that these concepts have to be generalized to take the polarization of radiation
and atomic polarization into account. For instance, when a photon excites our atomic
model from the ground term to the upper term, not only it contributes to increase the
population of one or more magnetic sub-levels of the upper term, but it also creates
coherences among them.

In the solar environment the atom also experiences collisions with the particles
present in the medium. The most important collisions are those with electrons (in some
cases also with protons) and those with neutral hydrogen atoms. The effect of collisions
is only marginally known. Indeed, this is a very complicated matter, and only few
theoretical results are available. On the other hand, there is an almost complete lack
of experimental results. In many applications, a distinction is made between anelastic
(or superelastic) collisions (mainly due to electrons) that induce transitions between
different J-levels, well separated in energy, and elastic collisions that induce transitions
between different M-levels of the same J-level (mainly due to neutral hydrogen atoms).
Unfortunately, this distinction becomes rather vague when treating the case of multi-
term atoms because the energy difference between M-levels is often comparable with
the energy difference between J-levels. Much work has still to be done on this subject
which is extremely important because collisions act on our model-atom basically with
three distinct (but correlated) effects: line broadening, depolarization, and frequency
redistribution in scattering events.
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2. An overview of the present theoretical schemes

One of the most fruitful theoretical approaches that have been used to cope with the
formidable problem outlined in the Introduction is the one based on the density matrix
operator. Introduced in the scientific literature by Von Neumann (1927), it was system-
atically applied to atomic physics since the seminal paper by Fano (a pupil of Fermi)
“Description of States in Quantum Mechanics by Density Matrix and Operator Tech-
niques” (1958). Astrophysical applications started with the work of Litvak (1975) for
the interpretation of the polarization properties of astrophysical masers and continued
with the work of Bommier & Sahal-Bréchot (1978) on solar prominences.

Starting from the simplifying assumption that the single processes of absorption
and emission are independent (Markovian approximation), and following the methods
of Q.E., it is possible to find the statistical equilibrium equations for the density matrix
elements of the selected model atom. The different rates appearing in the equations
(transfer rates and relaxation rates) depend on the local properties of the radiation field
illuminating the atom. Moreover, within the same theoretical approach, one can also
find the radiative transfer equations for polarized radiation along any particular direc-
tion. These equations contain the absorption coefficient (in the form of a matrix) and
the emission coefficient (in the form of a vector) which depend on the local values of
the density matrix elements (see Landi Degl’Innocenti & Landolfi 2004). The coupled
set of equations can thus be solved numerically or, in some few cases, analytically.

The main strength of this theoretical approach is that the statistical equilibrium
equations for the density matrix and the radiative transfer equations for the Stokes pa-
rameters are derived in a self-consistent way from the principles of Q.E.. Moreover, the
formalism allows the possibility of taking lower level polarization into account, to treat
multi-level and multi-term atoms, to include HFS in the calculations, and to account for
the interaction of the atom with a magnetic field in any regime (from the Zeeman effect
regime to the complete Paschen-Back effect regime). Through this formalism it is also
possible to account simultaneously for the polarizing effect of a magnetic field (due
to Zeeman splitting) and for its depolarizing effect on resonance polarization (due to
the Hanle effect). Finally, rather unfamiliar mechanisms, such as the so-called “level-
crossing”, “anti-level-crossing”, and “alignment-to-orientation” mechanisms are well
contained in the formalism and suitably described by it.

This approach has been successfully applied for the solution of a rather large num-
ber of problems concerning spectro-polarimetric profiles observed in the second solar
spectrum and in solar structures. Here we just mention some of the most relevant ap-
plications (see Belluzzi 2010, for further details): a) diagnostics of the magnetic field
in solar prominences (Leroy et al. 1983, 1984); b) modeling of the b-lines of magne-
sium (Trujillo Bueno 1999, 2001); c) modeling of the infrared triplet of ionized calcium
(Manso Sainz & Trujillo Bueno 2003); d) interpretation of spectro-polarimetric obser-
vations in prominences and filaments (e.g. Trujillo Bueno et al. 2002); e) interpretation
of the second solar spectrum of Ti i (Manso Sainz & Landi Degl’Innocenti 2002) and of
Ce ii (Manso Sainz et al. 2006); f) differential magnetic sensitivity of the Ba ii 4554 Å
line (Belluzzi et al. 2007).

Notwithstanding its numerous successes, the theoretical scheme based on the den-
sity matrix suffers from the severe limitation that, due to the Markovian approximation,
partial frequency redistribution (PRD) effects cannot be taken into account. Indeed,
referring to the intensity spectrum, PRD effects result to be important mainly for repro-
ducing the wings of very strong resonance lines, such as the calcium H and K lines, the
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magnesium b-lines, the sodium D lines, Hα, Hβ, Lyα, and few others. The importance
of PRD effects on polarization was put forward by the pioneering work of Dumont et
al. (1977), who pointed out that such effects might be the key ingredient to model the
typical triplet-peak structure observed in the Q/I profile of the “champion” Ca i line at
4227 Å (the one that shows the largest limb polarization and the first one to be observed
for this phenomenon by Redman 1941). We now believe that without including such
effects it would not be possible to interpret those linear polarization profiles that have
been classified as of “M-type” by Belluzzi & Landi Degl’Innocenti (2009). Indeed,
without invoking PRD effects it seems impossible to explain the physical origin of such
multi-peak structures.

To handle PRD effects, different theoretical schemes have been proposed. One
of them, due to Bommier (1997a,b), generalizes the theoretical approach previously
described by including higher order terms in the perturbative expansion of the atom-
radiation interaction, under the hypothesis of a two-level atom with unpolarized lower
level. Other schemes are based on the introduction of suitable redistribution matrices
but are generally restricted to the case of a two-level (or two-term) atom with unpo-
larized lower level (Omont et al. 1972; Domke & Hubeny 1988). Generalizations to
model atoms having more than two levels are difficult. In the scalar case such gener-
alizations have been proved to be possible, though extremely complex. For instance,
Hubeny & Oxenius (1987) succeed in defining generalized redistribution functions, but
to treat a 3-level model atom 11 such functions are needed, and this number increases
to 36 for a 4-level model atom. Such generalizations have never been attempted in the
“polarized world”. Moreover, phenomena of lower-level polarization (differences in
populations among the sublevels and coherences between any pair of them) are difficult
to incorporate in the theory.

Another approach is based on the so-called metalevel theory (Landi Degl’Innocenti
et al. 1997). This is a heuristic approach which was developed for the scalar case by
several authors (Ehrenfest 1914; Weisskopf & Wigner 1930; Woolley & Stibbs 1953;
Milkey & Mihalas 1973; Milkey et al. 1975; Oxenius & Simonneau 1994). The main
idea is that the energy levels can be considered as a collection of internal “sublevels” or
“metalevels” having a certain distribution in energy. This distribution has a Lorentzian
profile whose width is inversely proportional to the lifetime of the level. The met-
alevel theory has the advantage of keeping the same scheme as the theory based on the
Markovian approximation, with the difference that a single matrix element ρnm becomes
a function ρnm(ζ), ζ being a parameter related to the energy of the single metalevel.
For the rest, the scheme of the theory remains the same, in the sense that two sets of
equations are established, the statistical equilibrium equations for the density matrix
function and the radiative transfer equations, containing the density matrix function in
the absorption matrix and in the emission vector. In its present status, without the in-
troduction of collisions, the metalevel theory is capable of correctly describing a rather
large number of scattering phenomena (including those where the ground level has a
definite amount of atomic polarization). When lower level polarization is neglected, it
brings to the same results as the well-known Kramers-Heisenberg equation.

The metalevel theory was successfully applied by Landi Degl’Innocenti (1998,
1999) in order to explain the peculiar interference profile observed in the second solar
spectrum around the sodium D-lines, though this result was subsequently criticized
because of the rather large amount of ground level atomic alignment needed to explain
the observations. However, notwithstanding its partial success, the metalevel approach
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never reached the status of a completely satisfactory theory for two main reasons. From
one side, the introduction into the theory of the effect of collisions has revealed to be
rather problematic, and it has not been achieved so far in a consistent way. From the
other side, the broadening of the metalevels distribution is introduced in a somewhat
heuristic way and a “rule” for obtaining its value has never been found.

3. Conclusions and new ideas

The theoretical approach based on the density matrix formalism, and self-consistently
derived from the principles of Q.E. is presently one of the most solid theoretical frame-
works in the field of spectropolarimetry. This theoretical approach has been highly suc-
cessful, mainly for the interpretation of signals which can be described in the so-called
limit of complete redistribution in frequency (CRD). However, it suffers from the severe
limitation that PRD effects cannot be accounted for. The metalevel theory can handle
PRD effects, but all the attempts for its generalization to account consistently for col-
lisions and lower-level coherences have failed. The redistribution matrix approach is
very suitable for taking PRD effects into account. However, it can consistently describe
only two-level atoms with unpolarized lower level. New heuristic approaches have been
proposed for treating two-term atoms, but they are based on rather crude approxima-
tions and their validity and physical consistency are far from being firmly established.
In this scenario, some new ideas for treating the problem through a self-consistent set
of equations, fully derived from first principles, would be highly desirable. Here we
would like to put forward some few reflections that may lead to the establishment of
such a theory.

Consider a physical system having total Hamiltonian

H = H0 +H I , (1)

the sum of the unperturbed Hamiltonian H0 and of the interaction Hamiltonian H I.
The physical system evolves in time according to the Schrödinger equation

i~
∂

∂t
|ψ(t)⟩ = (H0 +H I) |ψ(t)⟩ . (2)

To solve this equation one can use the method referred to as “method of the variation
of the constants”. Suppose to have solved the stationary Schrödinger equation forH0

H0 |α⟩ = Eα |α⟩ . (3)

One can develop the wave-function in series of the eigenvectors ofH0 by writing

|ψ(t)⟩ =
∑
β

cβ(t) e−iEβ t/~ | β⟩ =
∑
β

fβ(t) | β⟩ . (4)

The coefficients fβ(t) are functions of time and they reduce to a constant multiplied
by an exponential in the absence of perturbations. In the traditional method of the
variation of the constants, a differential equation is established for the coefficients cβ(t)
that multiply the exponential. Now, following an approach often called of “coarse-
graining”, we introduce a variation of the traditional method by directly developing the
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coefficients fβ(t) in Fourier series and thinking that the Fourier components are function
of time.

The coarse-graining technique, some times also refereed to as “multiscale tech-
nique”, consists in separating the time scales on which the physical phenomenon evolves
in two separate sets: the short timescales and the long timescales. This corresponds,
in the Fourier domain, to make a distinction between high and low frequencies, re-
spectively. Typically, one develops the time-varying signal (in our case the coefficients
fβ(t) appearing in Eq. [4]) through a Fourier integral. The frequency domain is how-
ever restricted to an interval (Ω,∞) containing all the relevant information about the
spectral characteristics of the signal. The coefficients of the Fourier development are
then functions of time that evolve according to the frequency domain that is outside
the interval chosen (frequencies smaller than Ω). This approach is connected with the
mathematical difficulties that are met when trying to define, for instance, the spectrum
of any non-stationary radiation source. In mathematical terms, the exact definition of
the spectrum would imply to measure the electric signal at any time t from −∞ to +∞,
which is obviously impossible in practice. If the time interval in which the sampling of
the signal is performed is T , one can obtain the spectrum only for frequencies larger
than ≃ 1/T , and the same spectrum is a function of time. An illustrative example is the
spectrum of the electromagnetic radiation emitted by a variable star.

We thus put

|ψ(t)⟩ =
∑
β

∫
∆Ω

f̂β(ω, t) |β⟩ e−iωt dω , (5)

where ∆Ω is a frequency interval sufficiently large to contain all the relevant spectral
information for the coefficients f . Substituting in the Schrödinger equation we obtain

i~
∑
β

∫
∆Ω

[
d
dt

f̂β − iω f̂β

]
|β⟩ e−iωtdω =

=
∑
β

∫
∆Ω

f̂β Eβ |β⟩ e−iωtdω +
∑
β

∫
∆Ω

f̂βH I |β⟩ e−iωtdω . (6)

We now multiply both sides by the vector ⟨α| to get∫
∆Ω

[
i~

d
dt

f̂α + (~ω − Eα) f̂α

]
e−iωt dω =

∑
β

∫
∆Ω

f̂βHIαβ e−iωt dω , (7)

where
H I
αβ = ⟨α|H I|β⟩ . (8)

From the integral equation one then gets the final equation

d
dt

f̂α(ω, t) − i
(
ω − Eα

~

)
f̂α(ω, t) =

1
i~

∑
β

H I
αβ f̂β(ω, t) . (9)

This is an exact equation for the Fourier transform of the state vector (expressed on the
basis of the eigenvectors of the unperturbed Hamiltonian). When applying these ideas
to the interaction between a material system and the radiation field, the eigenvectors of
the Hamiltonian are indeed of the form

|α⟩ → |a⟩|{nk}⟩ |β⟩ → |b⟩|{n′k}⟩ , (10)
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where, in Dirac’s notations, |a⟩ and |b⟩ are the eigenvectors of the atomic Hamiltonian
and |{nk}⟩ and |{n′k}⟩ are the eigenvectors of the radiation field Hamiltonian expressed in
the formalism of second quantization ({nk} is the set of integer numbers specifying the
number of photons present in each mode of the radiation field). The Fourier transform
of the “traditional” density-matrix element between the atomic states a and b can be
obtained by tracing over the radiation field states to get an expression of the form

ρ̂ab(ω, t) =
∑
{nk}

p{nk} f̂ ∗a,{nk}(ω − E{nk}, t) f̂b,{nk}(ω − E{nk}, t) , (11)

where p{nk} is the probability of finding the radiation field in the eigenstate |{nk}⟩, and
E{nk} is the corresponding energy.

We hope that these ideas, and in particular the introduction of the Fourier trans-
form of the density matrix may reveal to be well-founded and that they may lead to
the establishment of a set of equations really capable of handling the general problem
outlined in the Introduction. Obviously, there will be a price to pay because one will
be obliged to deal not with the density-matrix elements of atoms, but with the Fourier
transforms of such density-matrix elements. We also hope that this approach may lead
to some simplifications in the theoretical treatment of collisions for which working in
the Fourier domain may result in being more appropriate.
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