Non-magnetic bright points in 3D simulations of the solar atmosphere

*Flavio Calvo*¹,² *Oskar Steiner*¹,³
*and the CO⁵BOLD group*

¹Istituto Ricerche Solari Locarno (IRSOL), Locarno Monti, Suisse  
²Université de Genève, Genève, Suisse (UNIGE)  
³Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg i.Br., Germany

5th international workshop on small-scale solar magnetic fields,  
22 April 2015
One Sun, two approaches

\[
\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho vv + (P + \frac{B \cdot B}{2}) I - BB) = \rho g,
\]

\[
\frac{\partial B}{\partial t} + \nabla \cdot (vB - Bv) = 0,
\]

\[
\frac{\partial (\rho e_{tot})}{\partial t} + \nabla \cdot \left( \left( \rho e_{tot} + P + \frac{BB}{2} \right) v - (v \cdot B) B + F_{rad} \right) = 0,
\]

+ radiative transfer: \[
\frac{d}{ds} I(s) = -K(s)I(s) + \epsilon(s).
\]
Ideal MHD and RT equations

\[
\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot \left( \rho \mathbf{v} \mathbf{v} + \left( P + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{I} - \mathbf{B} \mathbf{B} \right) = \rho \mathbf{g},
\]

\[
\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}) = 0,
\]

\[
\frac{\partial (\rho e_{\text{tot}})}{\partial t} + \nabla \cdot \left( \left( \rho e_{\text{tot}} + P + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{v} - (\mathbf{v} \cdot \mathbf{B}) \mathbf{B} + \mathbf{F}_{\text{rad}} \right) = 0
\]

+ radiative transfer : \( \frac{d}{ds} I(s) = -K(s)I(s) + \varepsilon(s) \)
Radiative transfer: back to 2D images from 3D boxes (post-processing)
Models and reality: spot the odd one out!

One of these images is a simulation from CSCS... which one?
Models and reality: spot the odd one out!

Hinode

Sunrise

One of these images is a simulation from CSCS... which one?
Models and reality: spot the odd one out!

Look carefully at the second image: it cannot possibly be real. Why?
Models and reality at the same scale

Real image

Simulation

GREGOR®
Tenerife

Rothorn®
CSCS
Magnetic and non-magnetic models

White spots emerge from magnetic field concentrations in inter-granular lanes.

Similar *smaller* white dots have drawn our attention in *non-magnetic* models. Where are they coming from?
Non-magnetic bright points

Let’s have a look at nMBP0868.

Why is it brighter than its neighbourhood?
Slice across nMBP0868

Emergent intensity (top left), temperature (bottom), log(rho) (right)
Slice across nMBP0868

Emergent intensity (top left), temperature (bottom), log(rho) (right)
Bolometric emerging intensity

To understand all these contrasts, we have two ingredients:

Optical depth

Thick blue: isosurface at $\tau = 1$. Contours: temperature in [K].

Temperature
Slice across nMBP0868

- Constant optical depth $\tau = 1$: \textit{blue line}
- Minimum density: \textit{red line}
- Density: background color, low (blue) to high (red)
- Velocity: shadows, light is out of the screen, dark is in the screen
nMBP’s are regions with:

- swirls, but about 150 [km] below $\tau = 1$ there are many swirls that do not produce nMBP’s
- low density, but there are also many of those regions which do not produce nMBP’s
- high contrast in emergent intensity, but again, not all structures with high contrast and similar size are nMBP’s!
Slice across nMBP0868

Units: cgs
Conclusions

▶ Non-magnetic bright points appear spontaneously in inter-granular lanes

▶ Cool plasma falling inside inter-granular lanes starts swirling faster and faster just as a skater brings his arms along his body

![Image of Stéphane Lambiel](http://www.zimbio.com/photos/Stephane+Lambiel/)

![Image of water swirl](http://www.neatologie.com/water-sculptures/)

▶ This is similar to the bathtub effect: water swirls and in the "eye" of the swirl pressure and density are lower
A simple model

The Navier-Stokes equation is the non-conservative form is given by:

\[
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{1}{\rho} \nabla P + g = 0.
\]

Field dynamics  Advection  Gradient pressure  Gravity

In cylindrical coordinates, the advection term reads:

\[
(\mathbf{v} \cdot \nabla) \mathbf{v} = (\mathbf{v} \cdot \nabla) v_z \hat{z} + \left[ (\mathbf{v} \cdot \nabla) v_r - \frac{v_\theta^2}{r} \right] \hat{r} + \left[ (\mathbf{v} \cdot \nabla) v_\theta + \frac{v_\theta v_r}{r} \right] \hat{\theta}.
\]

Assume a stationary field \( \mathbf{v} = v_\theta \hat{\theta} \) and \( \nabla P = (\partial_r P) \hat{r} + (\partial_z P) \hat{z} \):

\[
\frac{\partial P}{\partial r} = \frac{v_\theta^2}{r}.
\]
Opened questions

- Are there really such bright points in the Sun? The new generation of telescopes will tell us...
- Can one have both magnetic and non-magnetic bright points?
- What if a huge concentration of magnetic field lines was trapped in a tornado?