SSAA/SGAA General Assembly Locarno, Palazzo Morettini, 15.–16. 10., 2015

Why numerical simulations?

Oskar Steiner

Istituto Ricerche Solari Locarno (IRSOL), Locarno Monti, Switzerland Kiepenheuer-Institut für Sonnenphysik, Freiburg i.Br., Germany

-toc — ref

1. Understanding polarimetry with simulations

Spectral line (Stokes I) and corresponding Stokes V (schematic).

toc — ret

Due to the Zeeman-effect, left or right circularly polarized light emanates from the flanks of a magnetically sensitive spectral line. Stokes V is the difference between right and left circularly polarized light.

Oskar Steiner -

1. Understanding polarimetry with simulations (cont.): observation

Weak field limit: $V \sim g(\partial I / \partial \lambda)$ \Rightarrow 20 V_{6302}^{peak} $g_{6302} \ (\partial I/\partial \lambda)_{6302}^{\max}$ $\overline{g_{6301}} \ \overline{(\partial I/\partial \lambda)^{\max}_{6301}}$ peak 10 6301 2.5 $(\partial I/\partial \lambda)_{6302}^{\max}$ $\overline{1.667} \overline{(\partial I/\partial \lambda)_{6301}^{\text{max}}}$ 0 $\approx 1.5 \cdot 1.1 \approx 1.66$ -10 \Rightarrow Section at 1% 15 -10-55 10 0 V₆₃₀₁ (%)

Bivariate scatter of the Stokes-V amplitudes of the 6302.5 Å line vs. the 6301.5 Å line as *observed with Hinode/SOT/SP*. The dashed line with slope s=1.66 represents the regression relation expected for weak fields. We identify *two populations of points*. From *Stenflo (2010) A&A 517 A37*.

V₆₃₀₂ (%)

1. Understanding polarimetry with simulations (cont.):

toc — ref

simulation data

Scatter plot of Stokes-V amplitudes of two lines and histogram of the line ratio at twodifferent amplitude levels from the simulation.From Steiner & Rezaei (2012).

1. Understanding polarimetry with simulations (cont.):

toc — ref

simulation data

Left: Scatter plot of the Stokes-V amplitude of Fe I 630.250 nm vs. that of Fe I 630.151 nm of synthesized V profiles from MHD simulation h50. The scatter is from pixels at full spatial resolution. *Right:* Corresponding histogram of the points that fall within the range $0.8 \le V_{630.15} \le 1.0$ (black) and $1.8 \le V_{630.15} \le 2.0$ (gray).

From Steiner & Rezaei (2012), Hinode 5 Proc.

Oskar Steiner

"It is nice to know that the computer understands the problem, but I would like to understand it too."

Attributed to E.P. Wigner

"It is nice to know that the computer understands the problem, but I would like to understand it too."

Attributed to E.P. Wigner

"It is nice to know that our simulations reproduce the observations, but what can we learn from it?"

- toc — ref

and for pixels with $1.0 \le V_{b\,6301} \le 2.0$. $s = \langle V_{b\,6302}/V_{b\,6301} \rangle$.

1. Understanding polarimetry with simulations (cont.)

Oskar Steiner -

Steiner & Rezaei (2012)

— toc — ref

2. Understanding polarimetry with simulations (cont.)

Pixels with polarization White: level $1.0 \leq V_{630.15} \leq 2.0$ belonging to the population with $V_{630.25}^{\rm b}/V_{630.15}^{\rm b}$ \leq 1.5(first, main population). Red: Pixels with polarization level $1.0 \leq V_{630.15} \leq 2.0$ belonging to the population with $V^{\rm b}_{630,25}/V^{\rm b}_{630,15} \geq 1.5$ (second, intrinsic weak field population). *Background:* Continuum intensity at 630 nm. From Steiner & Rezaei (2012) Hinode 5 Proc.

Conclusion: The two populations can be explained in terms of weak (hectogauss) magnetic fields. *Numerical simulations are indispensable for the correct interpretation.*

Oskar Steiner -

2. Numerical simulations at IRSOL

Solar granulation *observed* with the new 1.4 m GREGOR solar telescope. Broadband filter at $\lambda = 4860$ Å.

Solar granulation *simulated* with the CO⁵BOLD radiation MHD code. Synthetic map of bolometric intensity.

Oskar Steiner —

Bolometric intensity maps (CO⁵BOLD simulations, $\Delta x = \Delta y = \Delta z = 10$ km)

With magnetic fields: *magnetic bright points*.

Without magnetic fields: non-magnetic bright points Courtesy, *F. Calvo*.

Slices across a non-magnetic bright point (nMBP0868)

Emergent intensity I (*top left*), temperature T (*bottom*), density $log(\rho)$ (*right*)

toc — ref

Slices across a non-magnetic bright point (nMBP0868)

Emergent intensity I (*top left*), temperature T (*bottom*), density $log(\rho)$ (*right*)

toc — ref

non-magnetic bright points (nMBPs) are locations with:

- swirling motion (but
 - pprox 150 [km] below au=1

there are often swirls that do not produce nMBPs);

- *low density* (but a density deficiency alone does not warrant nMBP's);
- high intensity contrast (but a local intensity peak does not need to be a nMBP).

Density (blue: low, red: high) and velocity field in an horizontal plane, 150 [km] below $\langle \tau \rangle = 1$

Courtesy, F. Calvo, IRSOL.

Previous investigations of non-magnatic bright points from simulations by *R. Moll et al.* (2011, A&A 533, A126), *B. Freytag* (2013, MSAI 24, 26), *B. Beeck et al.* (2015, A&A 558, A49).

Statistical properties from 256 non-magnetic bright points:

diameter [km]	intensity	v contrast	mass density	Wilson
(intensity FWHM)	local [%]	global [%]	contrast [%]	depression [km]
40 ± 10	20 ± 10	2.3 ± 9	58 ± 10	103 ± 32

Courtesy, F. Calvo, IRSOL.

Multi-Waveband Observation:

Layered atmosphere from the *photosphere* (bottom panel: magnetogram, Fe I 630.2 nm continuum), through the *chromosphere* (Dopplergram, Ca II 854.2 nm) and the transition region (He II 30.4 nm) to the low corona (top: Fe IX 17.1 nm). Cotemporal observations with SDO/AIA (cadence, 12 s; image scale, 0.699'' per pixel) and SST/CRISP (cadence, 14 s; Ca II 854.2 nm; image scale, $0.0699^{\prime\prime}$ per pixel). From Wedemeyer, Scullion, Steiner et al. (2012) Nature 486, 505.

Oskar Steiner -

Close-up of a swirl event. The plasma flows along and co-rotates with the magnetic field (spiral streamlines). From *www.solartornado.info*.

3. Polarized radiative transfer in discontinuous media

Horizontal cross-section in the chromosphere of a simulation. Colors show temperature. *Shock fronts and temperature spikes* are ubiquitous.

In a *PhD-project at IRSOL*, we test new ideas on numerical methods for polarized radiative transfer in discontinuous media (PhD-project of *Gioele Janett*).

— toc — ref

Table of content

- 1. Understanding polarimetry with simulations
- 2. Numerical simulations at IRSOL
- 3. Polarized radiative transfer in discontinuous media

References

References

- Beeck, B., Cameron, R.H., Reiners, A., & Schüssler, M.: 2013, *Three-dimensional simulations of near-surface convection in main-sequence stars II. Properties of granulation and spectral lines*, A&A 558, A49
- Freytag, B.: 2013, *Advances in the hydrodynamics solver of CO5BOLD*, Mem. Soc. Astr. It. Suppl. 24, 26
- Moll, R., Cameron, R.H., & Schüssler, M.: 2012, Vortices in simulations of solar surface convection, A&A 533, A126
- Stenflo, J.O.: 2010, Distribution functions for magnetic fields on the quiet Sun, A&A 665, A37
- Steiner, O., Rezaei, R.: 2012, Recent Advances in the Exploration of the Small-Scale Structure of the Quiet Solar Atmosphere: Vortex Flows, the Horizontal Magnetic Field, and the Stokes-V Line-Ratio Method, in L. Golub, I. De Moortel, and T. Shimizu (eds.), Hinode 5: Exploring the Active Sun, ASP Conf. Ser. 456, p. 3-32.
- Steiner, O., Züger, F., & Belluzi, L.: 2015, *Polarized radiative transfer in discontinuous media*, A&A submitted
- Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de la Cruz Rodriguez,
 J., Fedun, V. & Erdélyi, R.: 2012, *Magnetic tornadoes as energy channels into the solar corona*, Nature 486, 505-508

Oskar Steiner —