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CrossMark

%. Unfortunately, this consistency condition is not
suf cient to ensure convergence because the cumulative sum of
local errors may grow exponentially. However, this exponential
growth cannot happen if the numerical method is stable. In light
of this, Hackbuscl{2014 concludes thatwhether consistency
implies convergence depends on stabili§tability analysis is
employed to provide additional requirements to numerical
methods(e.g., a limited step-sigeHowever, these particular
stability requirements are problem-dependent and oftequttif
to be determined.

This paper aims to give a deeper analysis on stability
conditions, when facing the numerical integration of
Equation (1). Section2 focuses on the propagation matrix
and on its eigenvalues. Sectidpresents the stability analysis
of RungeKutta methods. Particular attention is paid to the
assumptions and the limitations of this analysis, emphasizing
their relevance in the formal solution for polarized light.
Section4 analyzes the effect of the conversion to optical depth
on numerical stability, while Sectidhexposes the numerical
approximation of this conversion. Secti@n describes the
structure of a pragmatic numerical method for the numerical
integration of Equatioifl). Section7 presents complementary
considerations on this topic. Finally, Secti@ provides
remarks and conclusions.

2. The Propagation Matrix

The propagation matriK that appears in Equatiqd) can
be written in the fornfLandi Deglinnocenti & Landol 2004
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where the seven independent caéfnts are, in general,
functions of the frequency, propagation direction, and of a
series of physical parameters describing the atmosphere. The
matrixK can be decomposed into three different contributions,
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namely,
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0 pg O Figure 1. Angles and specify the direction of the magnetield B with

respect to the coordinate system of the line of sighhe Stokes compone@t
The rst matrix is called the absorption matrix, it is diagonal, is de ned as the intensity difference of the linearly polarized light in the two

and it is responsible for the usual exponential decay of theorthogonal axes; ande; in the plane perpendicular to the light beam.
whole Stokes vector. The second matrix is called the dichroism

matrix, it is symmetric, and it is responsible for dichroism
effects, i.e., the property of absorbing light to different extents
depending on the polarization states. The third matrix is called

the dispersion matrix, it is skew-symmetric, and it describes the

coupling of the Stokes components due to anomalous
dispersion effects.

The propagation matrix coefients consist, in general, of two
different kinds of contributions: continuum proceséaise to
boundHfree and freefree transitionsand spectral linefue to
bound-bound transitior)s In solar context, continuum processes
do not introduce dichroism or anomalous dispersion effects.

This section describes the propagation matrix agefits for
an isolated spectral line originating from the atomic transition
between two levels with total angular momentdgm(upper
leve) and J (lower leve), respectively. Eachl-level is
composed 02J 1 magnetic sublevels, which are degenerate
in the absence of magnetields and are characterized by the
magnetic quantum numbéf (M J, J 1, yJ). The
magnetic eld removes the degeneracy among the various

sublevels(Zeeman effegt inducing energy splitting, that is,
Y%  wvigM,

wherev is the Larmor frequency arglis the Landé factor.

with the inclination angle and the azimuth angle (as in
Figurel), one has
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In the observés frame, the explicit expressions of the
absorption proles ¢, and the dispersion prées iy (q = —1,
0, 1) read, respectively,

The spectral line takes into account the contribution of all the 1 1
allowed transitions connecting an upper subléye¥t,) and a ¢ (M, MJ)E H(w, 8, (4
lower subleve[J M ). Atomic polarization is neglected. MM
Coming back to the matrik , the total absorption coefient 14 1
7 can be written as ve  e{ (M, MJ)? Lw, @, ©)
M M, m

m ke ke o

wherek; is the local continuum absorption coeient,k; is the
(frequency integrat@dine absorption coetient, andp, is the
intensity absorption prde. Note that; can always be assumed
to be positive’ The dichroism coefients and the anomalous
dispersion coefcients read

no ke, a0 ki,

respectively, where Q, U, V. When the orientation of the
magnetic eld B with respect to the line of sight is described

where § ¥(M, M) is the relative strength of the Zeeman
componentq connecting the upper sublev@,M,) and the
lower sublevelJd M ). Using Wigner 3- symbols, its explicit
expression is given by

)2

The functionsH and L appearing in Formula¢4) and (5)
correspond to the Voigt and Faradspigt pro les de ned by

J
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4 stimulated emissiofwhich entersk ) is capable of producing an inversion H ( a) a ..d e X2 1 dx
of populations between two atomic levels. This could lead to a negative total W, ; d (w X)2 a2 !
absorption coeftient that yields an amplication of the radiation during the

propagation. This phenomenon, which is at the basis of the devices such as 1..4d X2 w X

lasers and masers, is completely negligible in solar applications and is not Lw a = e 2 > dx,
considered in this work. ™ d (w x) a
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respectively. Denoting wittg, and g the Landé factors

associated to the upper and lower levels, respectively, the

qguantity is de ned as
w V. va w(gM gM),
where the reduced frequeneys de ned by
1%0) v
O/WD '

with andyg being the frequency under consideration and line-
center frequency, respectively. The Doppler width of the line
%p is given by
VoWT

c

(yWD

wherewr denotes the random velocity of the atoms due to
thermal and microturbulent motions, and the speed of light.
The quantity

Wa

Va ’
Wt

is the normalized frequency shift due to a bulk motion of ~

velocity wa in the medium. The normalized Zeeman splitting
Vg is given by

VL

0/GVD

Vs

The damping constamtis given by

(

L)
CVWD

where takes into account the natural width of the ligédue
to the nite life-time of the upper and lower leyeind the
collisional width ( (due to collisions of the atom under
consideration with other atoms and ions in the plasand it
reads

a

o

2.1. Eigenvalues of the Propagation Matrix
Let
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Table 1

Factors- and - for Different Values of and

Special Cases -
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The module of the dichroism vector sats
n-"n, (7)

but no similar relation holds for. The comprehension of these
expressions is facilitated by Taldlewhere the factors and
are given for certain special cases. Note thaand - do
not depend on the azimuth anglef the magnetic eld vector
and they always assume real positive values limited by

0 - n 0-- p. - -(8 -

The combination of conditiong) and(8) guarantees that the
real part of the eigenvalues in Equat{@p is always positive.
Therefore, the spectral radiug) of the propagation matrik

satis es
/oy E/m . (P

n - r(K)

Finally, knowing if the propagation matrik is diagonalizable

is relevant information, because stability analysis is notably

simpler in this case. If = 0 or = 0, the propagation matrix

is normal(see Appendipd) and, consequently, diagonalizable

in .If 1 vB8thenboth - Oand - 0. Thisimplies

that K has four distinct eigenvalues and can be thus

diagonalized in . On the other hand, if 2 and3weither
=0 nor =0, K may not be diagonalizable because its

eigenvalues are not distintee Tablél).

7 - max{ 1

3. Stability Analysis
Performing stability analysis of numerical methods for

denote the dichroism and the anomalous dispersion vectorsQDEs is often quite involved. A gentle introduction to stability

respectively. The four eigenvalues of the propagation niétrix
read(Landi Degllnnocenti & Landol 2004
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where
(JysyJ?Z %4 (- P &2 p3/2,
(JySyJm? pd%7a (- P &2 p3/2,

analysis of numerical methods for ODEs can be found in
Higham & Trefether(1993.

This section is dedicated to the study of the stability
properties of Rungéutta methods applied to Equati@l). In
this equation, the Stokes vectois the only quantity that can
propagate or amplify errors introduced in previous steps.
Consequently, the emission termmcan be omitted in the
stability analysis, because it does not explicitly depend.on

Moreover, Equatior(l) is linear in the variablé and the
propagation matriX depends on the space variablén this
case, it is common to analyze the dynamics of the system
assuming tha is constant around each positigyof interest.
Denoting by A K(s) the propagation matrix with
“frozen’ coef cients, one easily performs the stability analysis
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use : - to guarantee the correct exponential attenuation of theeach grid. These values have been approximated to the second
Stokes vector. Otherwisgi) the method: & is used whenever  digit.
stable(to reduce computational cpsand (iii) if : E is not Although not shown, one must point out that the use 'ofs
stable, one uses” with the optional conversion to optical necessary in order to deal with the stiffness of optically thick
depth if : A loses stability due to the variations of the cells. This is partly visible in the fourth row, whedeshows
eigenvalues in the intervid, $ 1]. overshoots. A similar numerical experiment based :dn
For example, this strategy can be implemented using’deun and :# only presents oscillations in the spatial region
method (which is also known as the explicit trapezoidal rule [ 0.12 1¢, 2. 18 if the gdd is too coarse.
and has order)2s : E, the implicit trapezoidal rul@vhich also For comparison, Figuré shows the numerical evolution of
has order pas : A, and the implicit Euler metho@vhich has the Stokes vector when this is computed, relying solely &n
order J as : . These methods empld§ and < at grid points With 140 points, this numerical solution is completely spurious
only, avoiding the use of interpolated off-grid points because of numerical instability. With 200 points, the result is
quantities. Computing the eigenvalueskofat a points is physically correct only after a certain depth. In particular, in the
roughly one-third as expensivas one step of E, whereas: A depth regio 0.12 1G,2§ 18, this numerical solu-
is roughly twice as expensive a$§. The implicit Euler method tion oscillates vyildly and the relative error with respect to the
is less expensive than®, but more than: E. A second-order ~ reference solution is of the order of°10

L-stable method would be at least as expensive®abut since Finally, using the boun®) on the spectral radius instead of
L-stability is only required when large exponential attenuationscomputing the eigenvalues to decide which method to employ
are present, one can opt for a lower-order scheme. delivers similar results and is computationé&ljghtly) cheaper.

To assess the stability of Heésnmethod : E, one should
verify that 7. Supplemental Remarks

0 This section provides two additional considerations con-
. 1 28 A0 A(9AGS 9 1. % ceming the stability of the formal solution of the polarized
' 2 radiative transfer.

However, it is worth distinguishing the cases whene is 7.1. Stability of DELO Methods
. H . E . .
f\lg/z(?st?:lclfslef/}c:/fhs gl)%snedgor OSf thceagt:t?il}tmztgr?{a?r? gv?/\;er%rgm DELO methods belong to the class of exponential
. X ) yA Ey y integrators: aiming at removing stiffness from the problem,
0, itis advisable to switch to”, because = may suffer from e DELO strategy analytically integrates the diagonal elements
instability. To verify the stability of # and decide whether to  of the propagation matri¢Guderley & Hsul972. Rees et al.
opt for the conversion to optical depth, one can repeat the samg¢1989 rst proposed the application of this technique to
argument used for E but using Formulg18) instead of¢ . . Equation (1), which has been very successful thanks to its
A practical example is given by FiguB which shows the  stability properties. For this reason, the DELO strategy has
evolution of the approximate Stokes vector for the ke at since been chosen to develop higher-order methods: e.g., the
6301.50A computed with a FALC atmospheric mo@febntenla DELO-parabolic(Murphy 199Q Janett et al2017g and the
et al. 1993 supplemented with a constant magne#t *° The DELO-Bézier (De la Cruz Rodriguez & Piskuno2013
different rows refer to computational grids of increasing methods. DELO methods are currently widespread for the
re nements and the approximate solution is calculated by thenumerical evaluation of Equatid).
pragmatic numerical scheme suggested above. The DELO strategy relies on the spatial scale conversion
The method: - is used if there is an eigenvalue whose real part given by Equation22) (which potentially introduces numerical
is 7/ s(&sors 1). The method: Eisusedifp.= 0.6 error3 and it deals with the modéd propagation matrix
or if the real part of both eigenvaluggs ands 1)is 10 3, K K/mg 1, wherel represents the 4 4 identity matrix.
The method: A is converted to optical depth i.» 0.8, The stz_ibmty functlons of the.I.DELO-Ilnear and the DELO-
These parameters should not besidered as an ultimate choice, Parabolic methods satisfy conditi(s). When the norm of the
but they provide a concrete example. However, repeating thenatrixK tends to zerde.g., for a diagonal matriK), DELO
experiments with similar choices of parameters delivers similarmethods tend té-stability (Janett et a0179 and, consequently,
results. The reference solution is computed using the implicitt® L-stability. This fact explains the usual good performance of the
Euler method on a grid that contains 9999 points. DELO-linear method when dealing with very coarse grids and
The experiments show that the pragmatic strategy effectivelySU99ests its suitability as thestable method ™ in the pragmatic
switches among the methods, delivering physically meaningfulformal solver described in the previous section.
approximations independently from the coarseness of the grid.

As predicted by the analysis, the use of (purple doty 7.2. Oscillations in the Evolution Operator
qicreases with the reement of the grid: it is replacng by Here, a preliminary remark is required. When presenting the
: “(yellow and orange dotswhich is in turn replaced b_yE fourth-order A-stable cubic Hermitian method, Bellot Rubio
(.b/Lue dotg. Table2 summarizes the ug@ percentag)eofL. , et al.(1998 points to the improper sampling of the oscillations

: 7 (without and with conversion to optical deptand : - for in the evolution operator elements as a reason for instability

— _ _ _ _ and inaccuracy. In particular, they investigate the case of strong
explicit RungeKutia scheme. becatse the. latier meviably requires tne S, Where the cubic Hermitian methodgrantly fails to

i ' reliably reproduce the emergd@tand U Stokes components
computation of more stages. - . . - _ >
10 The values ofk and < have been computed with the RH code of When dealing with coarse spatial grids. In light of the stability

Uitenbroek(2001). analysis of Sectio8, some considerations can be done.








