The quest of the horizontal magnetic field

Oskar Steiner1,2

1Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg i.Br., Germany
2Istituto Ricerche Solari Locarno (IRSOL), Locarno Monti, Switzerland
1. The measurements

Deep mode *Stokes spectra* with an integration time of 67.2 s and a rms polarization in the continuum of 3×10^{-4}. From a 2-hour time series Lites et al. obtain mean apparent longitudinal and transversal field strengths of $\langle B_{\text{app}}^L \rangle = 11.0 \text{ Mx cm}^{-2}$ and $\langle B_{\text{app}}^T \rangle = 55.3 \text{ Mx cm}^{-2}$.

From Lites et al. (2007) *PASJ* 59, S571
1. The measurements (cont.)

<table>
<thead>
<tr>
<th>authors</th>
<th>instrument</th>
<th>line</th>
<th>internetwork mag. field angular distribution</th>
<th>$\left(B^T_{\text{app}} \right) / \left(B^L_{\text{app}} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lites et al. (2007)</td>
<td>SOT/SP</td>
<td>630</td>
<td>predominantly horizontal</td>
<td>5</td>
</tr>
<tr>
<td>Orozco Suárez et al. (2007)</td>
<td>SOT/SP</td>
<td>630</td>
<td>predominantly horizontal</td>
<td>2.1</td>
</tr>
<tr>
<td>Martínez González et al. (2008)</td>
<td>VTT/TIP</td>
<td>1560</td>
<td>isotropic distribution</td>
<td>1.57</td>
</tr>
<tr>
<td>Beck & Rezaei (2009)</td>
<td>VTT/TIP</td>
<td>1560</td>
<td>strongly field-strength dependent</td>
<td>0.42</td>
</tr>
<tr>
<td>Asensio Ramos (2009)</td>
<td>SOT/SP</td>
<td>630</td>
<td>isotropic for weakest fields</td>
<td>1.57</td>
</tr>
<tr>
<td>Stenflo (2010)</td>
<td>SOT/SP</td>
<td>630</td>
<td>predominantly vertical</td>
<td>—</td>
</tr>
<tr>
<td>Ishikawa & Tsuneta (2011)</td>
<td>SOT/SP</td>
<td>630</td>
<td>predominantly vertical</td>
<td>0.86</td>
</tr>
<tr>
<td>Borrero & Kobel (2011a)</td>
<td>SOT/SP</td>
<td>630</td>
<td>undeterminable</td>
<td>—</td>
</tr>
<tr>
<td>Borrero & Kobel (2011b)</td>
<td>SOT/SP</td>
<td>630</td>
<td>non-isotropic</td>
<td>—</td>
</tr>
<tr>
<td>Bellot Rubio & Orozco Suárez (2012)</td>
<td>SOT/SP</td>
<td>630</td>
<td>very inclined</td>
<td>—</td>
</tr>
<tr>
<td>Orozco Suárez & Katsukawa (2012)</td>
<td>SOT/SP</td>
<td>630</td>
<td>predominantly horizontal for weakest fields</td>
<td>3.5</td>
</tr>
<tr>
<td>Stenflo (2013)</td>
<td>THEMIS/</td>
<td>524.7</td>
<td>vertical to horizontal</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ZIMPOL</td>
<td>525</td>
<td>as function of height</td>
<td>—</td>
</tr>
<tr>
<td>Borrero & Kobel (2013)</td>
<td>SOT/SP</td>
<td>630</td>
<td>non-isotropic</td>
<td>—</td>
</tr>
<tr>
<td>Asensio Ramos & Martínez González (2014)</td>
<td>SOT/SP</td>
<td>630</td>
<td>quasi-isotropic</td>
<td>—</td>
</tr>
<tr>
<td>Lites et al. (2017)</td>
<td>SOT/SP</td>
<td>630</td>
<td>dominantly horizontal</td>
<td>—</td>
</tr>
</tbody>
</table>
2. The problem

The major difficulty in quantitatively determining the magnitude of the transverse magnetic field is posed by photon noise that affects Stokes Q and U.

Calibration curve from Lites et al. (2007) derived from a Milne-Eddington atmosphere with a homogeneous horizontal magnetic field for Q_{tot} and a magnetic field inclined by 45° for V_{tot}. From Lites et al. (2008) ApJ 672, 1237.
Selection effects when using thresholds on linear or circular polarization

- Select pixels with either Stokes V or Q or U above the noise level σ_n.
 \Rightarrow This threshold gives advantage to transversal fields because whenever $V > \sigma_n$, noisy Q or $U < \sigma_n$ profiles add spurious horizontal fields.

- Select pixels with a signal of Stokes V and (Q or U) above the noise level.
 \Rightarrow This gives again advantage to transversal fields because alone pixels with strong transverse fields are chosen.

role of filling factor \Rightarrow
3. The remedy?

We set thresholds *not* in the Stokes space of polarization signals. Instead, we set it in the physical space of field strengths: Consider alone pixels with

\[B_{\parallel} \geq B_{\text{lim}} \quad \text{or} \quad B_{\perp} \geq B_{\text{lim}} \]

The weakest possible signal from \(B_{\text{lim}} \) is when \(B_{\parallel} = 0 \) and \(B_{\perp} = B_{\text{lim}} \). With \(Q = c_l^2 B_{\text{lim}}^2 \) and the limit \(Q \geq n\sigma_{\text{noise}} \), we get

\[B_{\text{lim}} = \frac{1}{c_l} \sqrt{n\sigma_{\text{noise}}} \]

With \(V = c_c B_{\parallel} \) and \(B_{\parallel} \geq B_{\text{lim}} \) we get then

\[\frac{V}{c_c} \geq B_{\text{lim}} = \frac{1}{c_l} \sqrt{n\sigma_{\text{noise}}} \]

\[\Rightarrow \quad \text{selection criterion:} \quad Q \geq n\sigma_{\text{noise}} \quad \text{or} \quad V \geq \frac{c_c}{c_l} \sqrt{n\sigma_{\text{noise}}} \]

If \(Q < n\sigma_{\text{noise}} \): set \(Q \equiv 0 \). If \(V < \frac{c_c}{c_l} \sqrt{n\sigma_{\text{noise}}} \): set \(V \equiv 0 \).
3. The remedy? (cont.)

In principle, the threshold in physical space should read:

\[\sqrt{B_\parallel^2 + B_\perp^2} \geq B_{\text{lim}}, \]

which leads to the selection criterion:

\[Q \geq n\sigma_{\text{noise}} \quad \text{or} \quad V \geq \sqrt{\left(\frac{c_c}{c_l}\right)^2 n\sigma_{\text{noise}} - Q} \]

But this has the inconvenience that a noisy \(Q \) enters the criterion for \(V \). It relaxes the threshold for \(V \) in the range \(0 \ll Q \lesssim n\sigma_{\text{noise}} \) relative to the former criterion.
4. A remedy for systematic errors

The IRSOL method (by *D. Gisler et al.*):

- Installation of a zero order half wave retarder film in front of the telescope;
- Rotation by 45° turns Q into $-Q$;
- $\frac{1}{2}(Q(\varphi = 0^\circ) - Q(\varphi = 45^\circ)) = Q$ — polarization from the telescope optics;
- Additional measurements at $\varphi = 90^\circ$ and $\varphi = 135^\circ$ to remove chromatic error;
- Accuracy down to below 10^{-5}.

The further development of this method for GREGOR and EST is part of the SOLARNET proposal.
4. A remedy for systematic errors (cont.)

Zero order half wave retarder film mounted on a motorized rotatable circular flange.

Design and construction by Daniel Gisler et al., IRSOL
Table of content

1. The measurements
2. The problem
3. The remedy?
4. A remedy for systematic errors

References
Role of filling factor:

\[
\langle B^L \rangle \propto \langle V \rangle \\
\langle B^T \rangle \propto \sqrt{\langle Q \rangle}
\]

A given linear polarization signal translates to a much weaker mean transversal field strength if this field is underresolved compared to a fully resolved observation.

→ back to § 2.
References

References (cont.)

